PROPIEDADES FÍSICAS Y QUÍMICAS CORROSIVIDAD SEGÚN ASTM NACE TM0169/G31-12a PRODUCTO FIRST FIRE

ÍNDICE Y CONTENIDO DEL INFORME

IN	IFOR	ME TECNICO DE CORROSIVIDAD METODOLOGÍA: ASTM NACE TM0169/G31-12a	2
	Cro	nograma del estudio:	3
	Pers	sonal del proyecto:	2
		ACTA DE INGRESO	
		PLAN DE ESTUDIO Y FUNDAMENTACION ANALITICA	
	III.		
	11/	CONCLUSIONES	1:

INFORME TECNICO DE CORROSIVIDAD METODOLOGÍA: ASTM NACE TM0169/G31-12a

Nombre Cliente: SOCIEDAD COMERCIALIZADORA NORTHIA SPA

Fecha Ingreso Muestra: 02/06/2021

Hora Ingreso Muestra: 9:05 hrs

Rotulación Muestra: FIRST FIRE 01 JUNIO 2021

• Rótulo: FIRST FIRE

• Composición: Agua, alcohol (desnaturalizado) y aditivo ignifugo

• Lote: 010621

• Vencimiento: No aplica

Análisis Solicitado: Determinación de corrosividad

Cadena de Custodia: corresponde a una frasco de 1 L. proporcionado por el

patrocinador para el estudio específico correspondiente.

Responsable Embalaje: Rodrigo Pezo

Responsable del Transporte: Rodrigo Pezo

Responsable de Recepción Laboratorio: Y.J.C

Director del plan de Estudio: Dra. Laura Börgel

Unidad responsable: Dra. Laura Börgel Aguilera y Cia. Ltda.

Control de Calidad: Dra. Laura Börgel

Código Interno: M030621

Certificación GLP: No cuenta con certificación GLP, pero el estudio se ajusta a los lineamientos GLP y Plan de Estudio basados en ORGANIZACION DE COOPERACION Y DESARROLLO ECONOMICOS (OCDE), París 1998, última revisión 2017, dado que director técnico efectuó curso GOOD LABORATORY PRACTICES (GLP). WHO- TDR TRAINING NETWORK. Training Office for Latin América- Alto. 3-7, Marzo 2008, Cali- Colombia.

Cronograma del estudio:

Actividad	Fee	Revisión	
Actividad	Inicio	Término	Kevision
Recepción de muestra	02/06/2021	02/06/2021	YJC
Generación de Plan de Estudio	02/06/2021	02/06/2021	LBA
Ejecución del estudio	02/06/2021	07/06/2021	YJC
Control interno	02/06/2021	07/06/2021	NGO
Elaboración de informe borrador	08/06/2021	09/06/2021	YJC
Control de Calidad	10/06/2021	11/06/2021	LBA
Elaboración de informe final	13/06/2021	14/06/2021	LBA
Liaboracion de informe infai			RCA

Personal del proyecto:

Director del Estudio : Laura Börgel Aguilera

Médico Toxicólogo

Analista : Yerko Jeldes Castillo

Ingeniero (E) Químico

Control de Calidad : Laura Börgel Aguilera

Médico Toxicólogo

Elaboración de reporte final : Laura Börgel Aguilera

Médico Toxicólogo

Roberto Castro Arévalo

Ingeniero Agrónomo

Responsable registro

Responsable del archivo

interno

: Natalia Godoy Olmos Administrador Publico

: Roberto Castro Arévalo

Ingeniero Agrónomo

Firma:

Firma:

Firma:

Firma:

Firma:

Firma:

Firma:

Fecha de inicio: 02/06/2021 Fecha de término: 14/06/2021

I. ACTA DE INGRESO

Siendo las 09:05 horas del día 02 de junio de 2021, se recepciona muestra del producto FIRST FIRE, identificada, rotulada y con su respectiva cadena de custodia de acuerdo con lo detallado:

Muestra:

Rótulo: FIRST FIRE

Lote: 010621Cantidad: 1 L

Estado Físico: líquidoVencimiento: No aplica

Una vez recepcionada en el área analítica, se procedió a mantener la muestra en condiciones de almacenamiento adecuadas, basadas en su respectiva HDS, para proceder a análisis solicitado

Reactivo:

- Agua, grado HPLC FISHER CHEMICAL
- Detergente
- Alcohol etílico

Materiales:

- Placas de metal (acero, aluminio, cobre)
- Placas de petri
- Material de vidrio uso de laboratorio
- Matraz de aforo 100 mL
- Vaso de precipitado

Instrumentos:

- Balanza analítica SCIENTECH SA120
- Micropipeta Discovery confort HT de 1.000 μL

Equipo

Estufa

Bioseguridad del operador: Guantes y delantal

Objetivo y Método:

Determinación de corrosividad del formulado FIRST FIRE, basado en ASTM NACE TM0169/G31-21a

Aplicabilidad:

Formulado FIRST FIRE

II. PLAN DE ESTUDIO Y FUNDAMENTACION ANALITICA

Metodología

ASTM NACE TM0169/G31-21a

Procedimiento

Análisis en duplicado.

Pesar con balanza de precisión de 1 mg dos placas de cada metal (cobre, acero y aluminio) y registrar.

Colocarlas en cápsulas de Petri rotuladas con tapa (una placa por cápsula). Agregar producto FIRST FIRE hasta cubrir cada placa de uno de los juegos. Tapar las cápsulas e introducir en estufa a 54°C por 5 días. Retirar de la estufa y dejar enfriar a temperatura ambiente.

Visualizar y anotar los cambios observados en el producto, la solución y/o las placas (color, forma de óxido, etc). Descartar el sobrenadante y lavar las placas con agua y detergente; deben quedar perfectamente limpia. En caso de material adherido, sonicar en agua y detergente.

Enjuagar las placas con alcohol etílico y secar unos minutos en estufa. Colocar las placas en un desecador durante 1 hora y pesarlas con balanza de precisión de 1 mg. Calcular la variación porcentual del peso.

El producto es corrosivo si:

- Se observan claros signos de corrosión en la placa o en el producto (tal cual o solución) tales como: cambios de color, oscurecimiento, oxidación, etc.
- Se observan diferencia de peso por defecto mayor o igual al 1%.
- Si se presentan algunos de estos signos en la placa en solución, igual considerar el producto corrosivo para ese metal.
- Si no se observan esos cambios, entonces informar como "no corrosivo".

III. RESULTADOS PLAN DE ESTUDIO CORROSIVIDAD DE FIRST FIRE

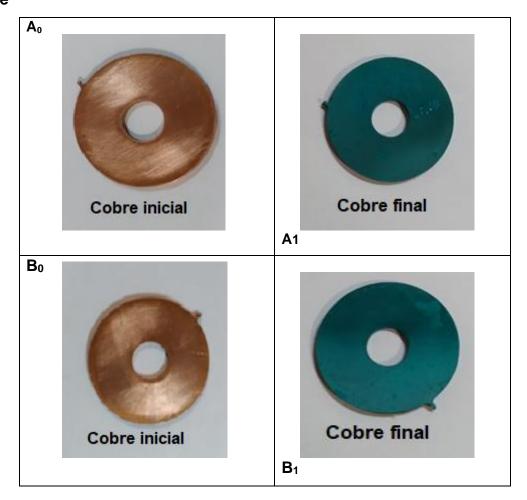
Fecha Inicio: 02/06/2021

Fecha Termino: 07/06/2021

Resultados:

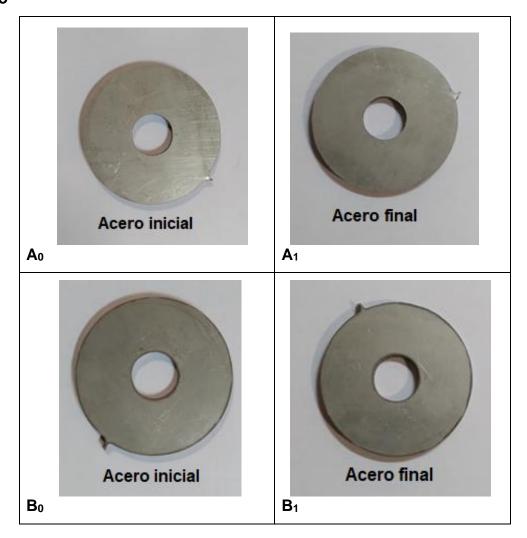
Tabla 1. Pesos de las placas con FIRST FIRE

Material de	ACQ 2020 al 0,05%				Variación porcentual en	
ensayo	Peso inicial (g)		Peso final (g)		peso	
Crisayo	A ₀	B ₀	A ₁	B ₁	А	В
Cobre	22,7207	22,4880	22,3396	22,0251	1,6915	2,0798
Acero	23,1565	23,3379	23,1561	23,3374	0,0017	0,0021
Aluminio	8,0268	8,1551	8,0191	8,1529	0,0959	0,0269


Valor porcentual de variación de peso para el formulado menor a 1%

Observaciones del formulado:

- Para la experiencia con cobre se observó cambio en el brillo y oscurecimiento de la placa, presencia de óxido de cobre.
- Para la experiencia con acero no se observó presencia de óxido sobre la placa, no hay cambios.
- Para la experiencia con aluminio se observó cambio en la superficie de la placa y perdida de brillo.



Cobre

Acero

Aluminio

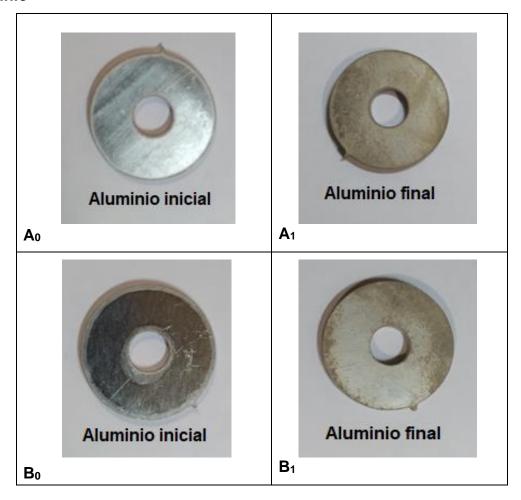


Tabla 2: Resumen de ensayo con FIRST FIRE en placas de cobre, acero y aluminio

	Cobre	Acero	Aluminio
FIRST FIRE	No Corrosivo	No Corrosivo	No Corrosivo

Las placas de los materiales de ensayo no llevan PVC y pueden tener una tolerancia de 0,8 mm en agua, presentan 3 mm de espesor, 38 mm de diámetro y un centro de 11 mm.

Tasa de corrosión = $(K \times W) / (A \times T \times D)$

K= constante 8,76 x 10⁴

T= tiempo de exposición en horas

A= área en cm2

W= masa perdida en g

D= Densidad en g/cm³

Acero: AISI 304, densidad 8 g/cc

Cobre: UNS n°C11000, densidad 8,89 g/cc Alumínio: AA 1100-H14, densidad 2,71 g/cc

Área total de la superficie: 9,7968 cm2

Tiempo de exposición:120 Horas

Cálculo muestras FIRST FIRE

Cobre:

Α

 $TC = (8.76 \times 10^4 \times (22.7207 - 22.3396)) / (9.7968 \times 120 \times 8.89)$

TC = 3,1943 mm/año

В

 $TC = (8.76 \times 10^4 \times (22.4880 - 22.0251) / (9.7968 \times 120 \times 8.89)$

TC = 3,8799 mm/año

TC promedio = 3,5371 mm/año

Acero:

Α

 $TC = (8.76 \times 10^4 \times (23.1565 - 23.1561)) / (9.7968 \times 120 \times 8)$

TC = 0,0037 mm/año

В

 $TC = (8.76 \times 10^4 \times (23.3379 - 23.3374)) / (9.7968 \times 120 \times 8)$

TC = 0.0047 mm/año

TC promedio = 0,0042 mm/año

Aluminio:

Α

 $TC = (8,76 \times 10^4 \times (8,0268 - 8,0191)) / (9,7968 \times 120 \times 2,71)$

TC = 0,2117 mm/año

В

 $TC = (8,76 \times 10^4 \times (8,1551 - 8,1529)) / (9,7968 \times 120 \times 2,71)$

TC = 0,0605 mm/año

TC promedio = 0,1361 mm/año

Tabla 3. Resumen de cálculos de tasa de corrosión de FIRST FIRE en cobre, acero y aluminio.

	Cobre	Acero	Aluminio
Tasa de corrosión (mm/y) Muestra formulación	3,5371	0,0042	0,1361

Tabla 4. Criterios de estabilidad para medir la resistencia a la corrosión, según Fontana. (FONTANA, M. G. and N. D. GREENE. Corrosion Engineering. Mc. Graw Hill, 1978)

Resistencia a la	Velocidad de corrosión			
corrosión relativa	mpy	mm/año		
Sobresaliente	<1	<0,02		
Excelente	1-5	0,02-0,1		
Buena	5-20	0,1-0,5		
Regular	20-50	0,5-1,0		
Pobre	50-200	1,0-5		
Inaceptable	>200	>5		

Fono: (56) 227350478 - (56) 227355863

IV. CONCLUSIONES

- De acuerdo con los estudios de corrosividad del producto FIRST FIRE, el valor porcentual de variación de peso para el cobre con el formulado fue mayor al 1%.
- El cálculo de la tasa de corrosión de la solución es menor al 6,25 mm/año, por lo que FIRST FIRE no es corrosivo de clase c en metales.
- Según Fontana, se puede concluir que el cobre posee una pobre resistencia a la corrosión relativa, en cambio el aluminio posee una buena resistencia y el acero una sobresaliente resistencia a la corrosión relativa del formulado FIRST FIRE.

Dra Laura Börgel Médico toxicólogo

Prof Asociado Toxicología Forense Universidad de Chile

Docente Diploma mención Toxicologia y accidentes químicos Universidad F Santa María

Presidente Corporación RITA-CHILE 2012 actual

Director Laboratorio Toxicologia Servitox

Directorio Asociación Latinoamericana de toxicología ALATOX 1999 actual

Director Comité Ejecutivo IUTOX 2010 a 2013

Delegado del CE de IUTOX para ICSU 2013 - 2016

Red de Seguridad Química GÍZ Alemania 2009

Counselor International Medical Geological Association IMGA 2015-2017

Dra Laura Börgel A Director Técnico

Santiago, Chile, 14 de junio de 2021